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to map the result onto the target architecture, which isthe crux of the compilation process, and not such aneasy task. Thus denotational semantics only takes careof the easy part: translating the program into an in-termediate \meta-language" (the lambda calculus withconstants) which still requires signi�cant compilation.In contrast, our approach has been somewhat morepragmatic, but still sound from the perspective of theformal semantics. Our intermediate language is the call-by-value lambda calculus with data and procedure con-stants (as in [Plotkin 75]), but with the addition of animplicit store. The target language is a generic registertransfer language whose is a subset of the intermedi-ate language's syntax but with a completely di�erentsemantics. Thus compilation �rst consists of transform-ing the source program into the intermediate language,and then performing source-to-source transformationson the intermediate program until it has the same mean-ing when considered as either an intermediate languageprogram or a machine language program.Although this process sounds simple enough, the rea-sons behind it are more signi�cant. Our motivationstems from the observation that the compilation processis in fact a transformation process, and thus the bestway to understand it is simply to look at the sourcelanguage and compare it feature for feature with thetarget language. From this perspective it makes sensethat common features should be left unaltered. Thenby concentrating on the di�erences, the very essence ofthe compilation (i.e. transformation) process unfolds.This research was supported in part by the National ScienceFoundation under Grant CCR-8451415, and the Department ofEnergy under Grant DE-FG02-86ER25012. The authors' cur-rent addresses are:Richard Kelsey Paul HudakNEC Research Institute Yale University4 Independence Way Box 2158 Yale StationPrinceton, NJ 08540 New Haven, CT 06520kelsey@research.nj.nec.com hudak@cs.yale.edu



The compiler described here is still based on deno-tational semantic descriptions of its intermediate andtarget languages, and thus its correctness is no harder(we feel easier) to prove than that of a \traditional"semantics-directed compiler. Formally, the correctnessof the heart of the compiler is captured as follows:Si(P) = Si(C(P)) = Sm(C(P))where: Si = intermediate language semanticsSm = machine language semanticsP = output of a language speci�c front-endC = compilation transformationsUsing this methodology we have developed a compilerwith the following features:1. The intermediate language is general enough andpowerful enough that many common programminglanguages can be compiled easily.2. The output runs as fast as that produced by a pro-duction compiler.3. It is simple and easy to show correct.We believe this is the �rst compiler to possess all of thesefeatures.2 The Intermediate LanguageThe intermediate language used in the compiler is thebasis of the entire compilation strategy. Its syntax isgiven in �gure 1. As mentioned above, it is essentiallythe call-by-value lambda calculus with data and proce-dure constants and an implicit store. As only the prim-itive procedures have access to the store (in particular,variables are not set, as will be explained later), it islargely invisible in the semantics as well as in the lan-guage itself. However, its presence does rely on the useof continuations in the semantics to specify the orderin which applications of primitive procedures use andmodify the store.The intermediate language is also simple in that ithas only a few types of expressions, each having a sim-ple semantics. This makes the compiler much less com-plex and easier to understand. Yet the intermediatelanguage is quite expressive in that it allows �rst-classprocedures, which can be made recursive through theuse of the store. Having �rst-class procedures, alongwith the implicit store, make it easy to write front-endsfor many modern programming languages.As can be seen from �gure 1 the intermediate languageis the lambda calculus with some additions:

K 2 Con constantsI 2 Ide identi�ersP 2 Pri primitives (procedure constants)L 2 Pro procedures�! (proc I (I*) E)C 2 Sab simple abstractions�! (lambda (I*) E) j (cont (I*) E)A 2 App applications�! (C E*) j (P (C*) E*) j (return P E*)E 2 Exp expressions�! K j I j L j C j A j(block E* E)Figure 1: The syntax of the intermediate languageThe block form is a sequencing construct that eval-uates its expressions in order and returns the result ofthe last.There are three types of abstraction expressions inthe intermediate language. The only di�erence betweenthem is syntactic in that one identi�er in the proc ex-pressions is distinguished; indeed lambda and cont haveidentical semantics. Only lambda abstractions are usedin initial input to the compiler. During the compilationprocess these are replaced with either proc or cont asa method of annotating how the abstraction is used inthe program: proc expressions are passed an explicitcontinuation argument and cont expressions are not.Calls to primitive procedures represent machine op-erations. Associated with each primitive procedure isall of the information needed to generate a particularsequence of machine instructions. This information in-cludes the type(s) of values the primitive returns, howthe primitive uses the store, and which registers maybe used to hold its arguments and return values. Callsto primitives have zero or more continuation arguments{ a call with no arguments returns a value, otherwiseone of the continuation arguments is called instead ofreturning.Note that the syntax of the intermediate languagedoes not allow calls to arbitrary expressions; thus thereis no default calling convention. Instead, primitive op-erations are used to specify call and return conventionsfor procedures. This simpli�es the compiler as all callsmay be treated identically. Returns are done using the(return P E*) form in which the primitive P speci�esthe way in which the values are to be returned from thelexically innermost abstraction.



3 The Machine LanguageThe machine language is an abstract assembly languagewritten in a subset of the syntax of the intermediate lan-guage, but with a completely di�erent semantics. Onlyidenti�ers, constants, lambda expressions, and calls toprimitive procedures are allowed, where� The identi�ers of the machine language representthe registers of the machine. Thus there are notvery many of them and they are not lexicallyscoped, but rather are locations whose values arein the store.� lambda expressions that are not continuations tocalls to primitive procedures represent code point-ers, and their identi�ers are ignored as argumentsare passed in the store. Calls must place the ar-guments into the registers in which the procedureexpects to �nd them.� The primitive procedures are the machine's instruc-tions, and the identi�ers in a continuation to a callto a primitive procedure represent the registers inwhich the results of the instruction appear.As an example, here is the interpretation of a call toa primitive procedure for a two-address add instructionboth in the syntax of the intermediate and machine lan-guages and in a conventional assembler syntax:($add ((lambda (r2) : : : )) r1 r2)madd r1,r2In the intermediate language this adds the values of r1and r2 and calls the continuation argument on the re-sult. In the machine language this adds the contentsof registers r1 and r2 and places the result in r2. Amuch larger example giving an intermediate code pro-gram and the corresponding assembly language programcan be found in �gure 11.4 The Transformation ProcessAs mentioned earlier, we can gain some insight into thenature of the transformation process by comparing thesource or intermediate language feature for feature withthe machine language, as shown in �gure 2. The entireproblem of compilation lies in using properties of thesecond to implement the �rst.Note that the store and call-by-value semantics areessentially the same in both languages { thus there is

nothing to be changed, and the transformation processcan ignore them. This both reduces the work that thecompiler must do and provides a useful tool, the store,to be used in implementing the rest of the intermediatelanguage.On the other hand, the �rst three items are di�er-ent. Based on this simple observation, we can summa-rize what is required of the compiler as follows:4.1 Implementing returns as callsCall and return must be implemented in terms of goto.This is done in two steps: 1) the program is �rst madelinear and every temporary value is explicitly bound toan identi�er; 2) the lambda expressions that bind thetemporary values are converted to explicit continuationsto the calls that produce the values. The explicit contin-uations are identical to the continuations used in the de-notational semantics of the intermediate language, andwill eventually be manifested as gotos in the machinecode. The resulting program contains only calls { thereare no returns { and thus procedure calls no longer needto save a return point.Intermediate MachineCall and return. Goto.Nested lexical scoping. Flat scoping.Large set of identi�ers. Small set of identi�ers.A store. A store.Call by value. Call by value.Figure 2: Properties of the intermediate and machinelanguages4.2 Transform nested lexical scopinginto 
at scopingJust as continuations from the denotational semanticswere added to implement transfer of control, now explicitenvironments from the denotational semantics are addedto implement lexical scoping. As in the denotationalsemantics these environments act as an indirection tothe store; but whereas the store is normally explicit, inour case it is implicit, corresponding to the realities ofthe target machine.Calls are added to the program to construct the en-vironments and to write and read the values they con-tain. Procedures have their lexical environments passedto them as arguments, and procedure calls become gotosthat pass arguments.



4.3 Restrict the use of identi�ersFinally, the programmust be transformed so that it onlyuses the small set of identi�ers of the machine language,which correspond to the �nite resources of the machine.Registers must be allocated to hold the values of theidenti�ers in the program, and any necessary calls addedto move values between registers or to temporarily savevalues in the store. At this point procedure calls havebeen reduced to nothing but simple gotos, since the ar-guments are passed in the store. Again, this agrees withthe reality of the machine.The program now has the same meaning whether it isinterpreted as an intermediate language program or asa machine language program and can be viewed as anassembly language program (with a somewhat unusualsyntax) for the target machine.5 The Compilation Process inDetailTo summarize, the compilation process is performed insix steps:1. Translating the source into intermediate code.2. Making the program linear.3. Adding explicit continuations.4. Simplifying the program.5. Adding explicit environments.6. Identi�er renaming / register allocation.Each step restricts the form of the code, and sub-sequent steps must preserve previous restrictions. Thecode expands as the compiler moves more and more ofthe work of the intermediate language's semantics intothe program. At the same time code improvement trans-formations work to reduce the size of the code, as eachexpansion of the code typically provides more opportu-nities to improve it.Much of the design of the compiler is oriented to-wards reducing the cost of saving and accessing lexicalenvironments. As the intermediate language is lexicallyscoped environments may need to be preserved for lateruse. The compiler uses both a heap and a stack for allo-cating environments. Stack environments are accessedeither through the current stack pointer or through anexplicit environment pointer; heap environments always

use an explicit environment pointer. As heap environ-ments and explicit environment pointers are less e�-cient than stack environments and implicit environmentpointers the goal of the compiler is to use as few heapenvironments and explicit environment pointers as pos-sible.In the remainder of this section we describe each ofthese steps detail. For even more detail, see [Kelsey 89].5.1 Translating Source Code into Inter-mediate LanguageInitially, a front-end speci�c to the source languagetranslates the program into the compiler's intermedi-ate language. Di�erent front-ends are needed for di�er-ent programming languages. Each consists of a trans-lator from the source language into the intermediatelanguage, a set of primitive procedures describing allof the machine operations that the source language re-quires, and a mapping from source language constantsto machine data. The translator is normally a simplesyntax-directed translator very much like the denota-tional semantics for the source language. Every typeof expression in the syntax of the source language hasa template that gives an equivalent expression in theintermediate language in terms of the translations ofthe expression's subexpressions. The primitive proce-dures and the description of constants are not normallyspeci�ed in denotational semantics but are necessary tocompile programs e�ciently.Standard techniques from denotational semantics areused in translating programs into the intermediate lan-guage. The values of variables are kept in locations inthe store, allowing the variables to be set to new values.Conditional expressions are implemented using primi-tive procedures that take more than one continuationargument, only one of which is actually called. Controlconstructs such as loops require the use of recursive pro-cedures. In denotational semantics recursion is normallydone using a �xed-point operator. The intermediate lan-guage contains no such operator. Instead, the procedureis stored in a location that is lexically visible within theprocedure itself. The procedure can then dereferencethe location to obtain itself as a value.Currently there are complete front-ends for Pascal,BASIC, and Scheme (although the latter does not yethave all of the Scheme primitives and run-time systemde�ned). The Pascal and Scheme front-ends were de-veloped along with the compiler. To give some ideaof source language portability, writing the BASIC front-end and its primitive operations took less than two days.



5.2 Making the program linearThis transformation gives an explicit order to the ap-plications in the program, introduces identi�ers for alltemporary values, and removes the block expressions.In the resulting code the arguments are never applica-tions (except for arguments to applications of lambdaexpressions with only one argument) and thus the codeis linear in that the calls are explicitly ordered.As an example of the transformation to linear code,in the expression(lambda (x y)(return $return ($+ () x ($* () y 2))))the result of the call to $* is an anonymous temporaryvalue (primitive procedures begin with a $ and $returnis a primitive used to return a single value; remem-ber that procedure call and return conventions must bespeci�ed with primitive operations). The transforma-tion converts this expression into(lambda (x y)((lambda (v1)((lambda (v2) (return $return v2))($+ () x v1)))($* () y 2)))where v1 is the identi�er introduced for the result of thecall to $* and similarly for v2 and the call to $+.5.3 Adding Explicit ContinuationsHere the compiler moves the lambda expressions intro-duced by the previous transformation into the applica-tions themselves as continuations. The transformationis given in [Plotkin 75], but made slightly more complexhere due to a more complicated syntax and a desire tolimit the size of the resulting program. 1All lambda expressions are replaced with either contor proc expressions. Those that are in call position orare continuations to primitive calls become cont expres-sions. The remaining lambdas become proc expressionswith an additional identi�er for the continuation to becalled when the procedure has �nished. The returncalls in the procedure are replaced with calls to the con-tinuation identi�er.As mentioned above, all three types of abstraction ex-pressions have the same semantics; the only di�erenceis a syntactic one in that proc expressions have a dis-tinguished identi�er that is bound to the procedure's1[Steele 78, Kranz 86] also combine this with the previoustransformation. It seems somewhat simpler as two seperatetransformations.

continuation. An important distinction between contand proc expressions is that the environments for contexpressions can always be allocated on the stack and arealways at a known o�set from the current stack pointer.The environments for proc expressions may be in theheap or the stack but must be accessed through an ex-plicit environment pointer. This distinction is a naturalone in that as cont expressions do not get passed a con-tinuation, the current continuation (and thus the cur-rent stack value) must be known at compile time. For acont expression to be always called with the same cur-rent continuation all calls to the value of the expressionmust be in the body of the same proc expression as thecont itself. If any calls were in the body of a secondproc expression that call would occur with the stackenvironment created by the second proc expression onthe top of the stack, instead of that created by the procexpression containing the cont.After continuations have been added to the programthe only cont expressions are either continuation argu-ments to primitives or were introduced during the trans-formation to avoid the duplication of continuation argu-ments to primitives. In either case the calls to the contexpression meet the above criterion.To continue the example used above, the transformedprogram would be:(proc c (x y)($* ((cont (v1)($+ ((cont (v2)($return () c v2)))xv1)))y2))The resultant program is in continuation passing style(CPS) and is now more structured than before:1. Arguments to calls may no longer be calls.2. The bodies of abstractions are now always calls.3. There are no longer any returns.The parts of the compiler that follow must preserve thecontinuation passing nature of the transformed program.5.4 Simplifying the ProgramConversion to continuation passing style is followed bya number of code improving transformations, manyof which are well known [Steele 78,Brooks 82,Kranz



86,Standish 76]. These include both local transforma-tions such as beta-reduction, and two global transfor-mations, one of which is based on 
ow analysis. Thetransformations are simpler when done after conversionto continuation passing style as the code is more struc-tured. For example, beta substitution may be donewithout reference to side-e�ects as arguments to appli-cations are never applications themselves.The �rst global transformation substitutes known val-ues for identi�ers bound by abstractions that are usedin more than one application. For example, if the (proc(c x) : : :) is called in two places and in both cases thevalue of x is y and y is lexically visible in the proc expres-sion, then y will be substituted for x. If the value beingsubstituted is a continuation, then the proc expressionbecomes a cont as long as the scoping restrictions de-tailed above are met. This allows many procedures, in-cluding recursive procedures such as those introduced tocompile iterative loops, to become cont expressions andcalls to these procedures to become simple jumps. Thusthe requirement that all control constructs in the sourcelanguage be implemented using procedures and proce-dure calls does not prevent the compiler from producingsimple and e�cient code for those control constructs.The second global transformation attempts to reducethe use of the store and thus increase the e�ectiveness ofthe other transformations by allowing them to manipu-late values that would otherwise be hidden in the store.The contents of particular locations in the store arepassed explicitly from cont expression to cont expres-sion instead of implicitly in the store. This is equivalentto classical de�nition-use 
ow analysis with the results ofthe analysis expressed in the program itself, allowing theother transformations, such as beta-substitution, to im-plement copy propogation, constant folding, and other
ow analysis based optimizations. Each proc expres-sion is transformed separately and thus only some usesof some locations may be removed by this transforma-tion.5.5 Adding Explicit EnvironmentsAs stated in section 4.2 the environments of the inter-mediate language's semantics are added to the program.This results in a program where the only abstractionsthat may have free identi�ers are continuations to callsto primitive procedures. The register allocator describedin the next section takes care of saving and retrieving thevalues of identi�ers needed by continuation argumentsto primitive applications, so these may be ignored forthe moment.As an example, here is a procedure that takes an ar-gument x and returns a procedure that returns x when

called (see section 6 for a expansion of let* into theinternal language):(proc c1 (x)($return () c1 <PROC>))<PROC> =(proc c2 ()($return () c2 x))In the transformed code shown below, both proce-dures are passed their environment as an additional ar-gument and construct environments for their lexicallyinferior procedures (only one will be shown as the innerprocedure's environment is not used):(proc c1 (e1 x)(let* ((e3 ($make-environment)))($return () c1 <PROC>)))<PROC> =(proc c2 (e2)($return () c2 x))The value of x is added to the environment in theouter procedure and obtained from it in the inner:(proc c1 (e1 x)(let* ((e3 ($make-environment))(i1 ($set-environment e3 'x x)))($return () c1 <PROC>)))<PROC> =(proc c2 (e2)(let ((x1 (get-environment e2 'x)))($return () c2 x1)))The call to $set-environment does not return a mean-ingful value, but it does modify the store. The �nalchange is to add the code for the inner procedure, whichis now a constant as it contains no free variables, to theenvironment so that the two may be returned as a singlevalue:(proc c1 (e1 x)(let* ((e3 ($make-environment))(i1 ($set-environment e3 'x x)))(i2 ($set-environment e3 'p '<PROC>))(p ($make-procedure e2 'p)))($return () c1 p)))<PROC> =(proc c2 (e2)(let ((x1 (get-environment e2 'x)))($return () c2 x1)))))The only analysis required for the addition of environ-ments is a determination of which procedures require



heap environments and which may use stack environ-ments. This is done either by �at, as in Pascal wherethe language design ensures that procedures are neverreturned upwards, or program analysis, in the case of alanguage such as Scheme. There are two cases in whichprocedures require heap environments: the procedurehas a use that is not a call to that procedure, such asbeing passed to another procedure; or the procedure hasa calling point within a procedure that both requires aheap environment and is not lexically superior to thecalled procedure.After the environments have been added more codeimproving transformations are applied. Examples ofthese include removing unused environments and remov-ing calls that write values that the program never reads.5.6 Identi�er Renaming / RegisterAllocationThe �nal phase of compilation is the allocation of ma-chine resources, such as registers and functional units,to the di�erent parts of the program. The allocation ofregisters and functional units can be done in any mannerbut the allocation is expressed through transforming theprogram. For registers this involves changing the namesof identi�ers to correspond to the register currently con-taining the value of the identi�er. Functional units arespeci�ed by the primitive operations, in that every prim-itive operation uses particular functional units. Allocat-ing functional units involves replacing primitive opera-tions with others that use the desired functional units.The current implementation does one form of instruc-tion selection in that it attempts to �nd sets of primitiveapplications that can be coalesced into a single load orstore instruction using the MC68020's indexed address-ing mode. The current implementation uses a very sim-ple register allocation algorithm that allocates registersfor each basic block separately. The register selectionalgorithm is purely local to basic blocks with the excep-tion that it must look ahead to determine which valuesneed to be preserved for use in later blocks.6 Factorial ExampleBy far the best way to understand the transformationsand their e�ects is to follow the compilation of a simpleprogram. As an example of the compiler in action, thesteps in compiling a very simple Pascal program willbe presented here. The sample program, shown in 3,reads in an integer x and prints out the value of x! =1 � 2 � : : : � x.

PROGRAM Fact;VAR x, r : integer;PROCEDURE Fact(n : integer;VAR res : integer);VAR i, r : integer;BEGINr := 1;FOR i := 1 TO n DOr := r * i;res := rEND;BEGINReadln(x);Fact(x, r);Writeln(r)END. Figure 3: Sample Pascal programWhile CPS code is easy for programs to analyze it isvery hard to read and some syntactic sugaring makesthe code much more comprehensible. The syntax thatwill be used here is a variation on Scheme's let* syntax.(let* ((v) ($p x y)) : : :)m($p ((cont (v) : : : )) x y)The meaning of the binding clauses in the let* is asfollows:((id1 id2 : : : ) ($p arg1 arg2 : : : )) frestgm($p (cont (id1 id2 : : :) frestg) arg1 arg2 : : : )In the let* notation each basic block of the programbecomes a single let* ending in a primitive call witheither more than one continuation argument or none atall.Figure 4 show the factorial program after the compilerhas converted the code into CPS and done some simpli-�cation, including substituting the body of the facto-rial procedure at its one calling point. The �rst blockis the body of the program, which reads a value for x,introduces locations for the variables i and r and the re-cursive procedure needed for the loop, calls the loopingprocedure, and writes out the value of r. The locationintroduced for x has been removed as its contents wasset only once and the value could be substituted at allother uses of the location. A location is needed for therecursive procedure implementing the loop as that is themost e�cient way of expressing recursion in the inter-mediate language.The body of the loop tests the value of r and either



(proc p.39 ()(let* (((t.14) ($read input))(() ($read-line input))((p.18) ($push '16))((p.19) ($push '16))(() ($set-contents p.19 '1))((p.24) ($push 'ptr))(() ($set-contents p.24 <LOOP>))(() ($set-contents p.18 '1))((p.27) ($contents p.24))(() ($call p.27))((t.23) ($contents p.19))(() ($write t.23 output))(() ($write-line output)))($simple-return () p.39)))<LOOP> =(proc p.41 ()(let* (((t.28) ($contents p.18)))($equal16 (<TRUE> <FALSE>) t.28 t.14)))<TRUE> =(cont ()($return () p.41))<FALSE> =(cont ()(let* (((t.37) ($contents p.19))((t.38) ($contents p.18))((t.36) ($multiply16 t.37 t.38))(() ($set-contents p.19 t.36))((t.35) ($contents p.18))((t.34) ($add16 t.35 '1))(() ($set-contents p.18 t.34))((t.33) ($contents p.24))(() ($simple-call t.33)))($return () p.41)))Figure 4: Factorial in CPSreturns or does the multiply, adds one to i, and thencalls itself recursively.The names of the introduced identi�ers re
ect theruntime values they represent: p for pointers and t forother values. $push is a primitive for producing newlocations that can be allocated on the stack; its argu-ment is the size of the location in bits. $contents and$set-contents read and write the contents of locations.In �gure 5 the program has been simpli�ed by chang-ing the loop procedure from a cont to a proc and itscontinuation has been substituted into the body of theprocedure. The two calls to the loop now use $jump asthere is no longer any continuation argument.The second global simplifying transformations mod-i�es the program to pass the contents of the locationsp.18 and p.19 (which hold the values of i and r) ex-plicitly as t.40 and t.41 as shown in �gure 6. This isthe code at the end of the code improvement phase of

(proc p.39 ()(let* (((t.14) ($read input))(() ($read-line input))((p.18) ($push '16))((p.19) ($push '16))(() ($set-contents p.19 '1))((p.24) ($push 'ptr))(() ($set-contents p.24 <LOOP>))(() ($set-contents p.18 '1))((p.27) ($contents p.24)))($jump p.27)))<LOOP> =(cont ()(let* (((t.28) ($contents p.18)))($equal16 (<TRUE> <FALSE>) t.28 t.14)))<TRUE> =(cont ()(let* (((t.23) ($contents p.19))(() ($write t.23 output))(() ($write-line output)))($simple-return () p.39)))<FALSE> =(cont ()(let* (((t.37) ($contents p.19))((t.38) ($contents p.18))((t.36) ($multiply16 t.37 t.38))(() ($set-contents p.19 t.36))((t.35) ($contents p.18))((t.34) ($add16 t.35 '1))(() ($set-contents p.18 t.34))((t.33) ($contents p.24)))($jump t.33)))Figure 5: The loop becomes a jumpthe compiler.Figure 7 shows the program after the introduction ofenvironments. This example does not require much inthe way of simpli�cations other than removing unusedcalls. Only p.45 (the global environment passed to theprogram) and t.14 (the value of x) are kept in an envi-ronment. Once the <LOOP> procedure (now a constantas it has no free variables) has been substituted at itstwo calling points, the cell for the recursive reference isno longer used and is removed. The call to pop o� thestack environment will be added after register allocation.Finally, in �gure 8 all of the identi�ers have been re-named with the registers that will contain their values.Two calls to $move16 are used to move constants intoregisters. Even this small program shows up the lackof sophistication in the current register allocator. The



(proc p.39 ()(let* (((t.14) ($read input))(() ($read-line input))((p.24) ($push 'ptr))(() ($set-contents p.24 <LOOP>))((p.27) ($contents p.24)))($jump p.27 '1 '1)))<LOOP> =(cont (t.40 t.41)($equal16 (<TRUE> <FALSE>) t.40 t.14))<TRUE> =(cont ()(let* ((() ($write t.41 output))(() ($write-line output)))($simple-return () p.39)))<FALSE> =(cont ()(let* (((t.36) ($multiply16 t.41 t.40))((t.34) ($add16 t.40 '1))((t.33) ($contents p.24)))($jump t.33 t.34 t.36)))Figure 6: Locations removedlack of a global register allocation scheme is shown inthat the value of x is loaded from the stack environmentevery time around the loop instead of remaining in aregister. This load could also be avoided by using anindirect operand to the cmp instruction that is emittedfor the $equal16 primitive.7 ResultsOur compiler is written in T [Rees 84], a dialect ofScheme, and generates code for the Motorola MC68020microprocessor. As mentioned above, two front-endshave been written, one for Pascal and one for Basic,along with a front-end for Scheme that lacks all of thenecessary primitive operations and an appropriate run-time system. The Pascal and Scheme front-ends weredeveloped along with the compiler. Writing the Basicfront-end and primitive operations took less than twodays.Several Pascal benchmarks have been used to com-pare the output of the implementation with that of amore traditional production compiler.2 The timings areshown here along with the times for the same programs2Except for palindrome the benchmark programs were gath-ered by John Hennessy and modi�ed by Peter Nye.

(proc p.39 (p.45)(let* (((p.42) ($push-stack-environment p.39))(() ($set-environment p.42 'p.45 p.45))((p.46) ($contents p.45 'input))((t.14) ($read p.46))(() ($set-environment p.42 't.14 t.14))((p.47) ($contents p.45 '(si)))(() ($read-line p.47)))($jump <LOOP> '1 '1)))<LOOP> =(cont (t.40 t.41)(let* (((p.44) ($get-environment p.42 't.14)))($equal16 (<TRUE> <FALSE>) t.40 t.44)))<TRUE> =(cont ()(let* (((p.43) ($get-environment p.42 'p.45))((p.48) ($contents p.43 'output))(() ($write t.48 p.11))((p.49) ($contents p.43 'output))(() ($write-line p.49)))($simple-return () p.39)))<FALSE> =(cont ()(let* (((t.36) ($multiply16 t.41 t.40))((t.34) ($add16 t.40 '1)))($jump <LOOP> t.34 t.36)))Figure 7: Environments addedcompiled using the Apollo Pascal compiler. The ApolloPascal compiler is a hand-coded compiler that does ap-proximately the same optimizations as the compiler pre-sented here, and is used extensively by Apollo in produc-tion software (for example, their entire operating systemis written predominantly in Pascal). The main di�er-ence between the two compilers is that the Apollo com-piler uses a less e�cient procedure call mechanism, butdoes some non-local register allocation and loop invari-ant code hoisting that we do not do.Figure 9 lists several Pascal programs that have beencompiled and run using the compiler. Figure 10 givesthe running times for these programs. \Us" is the timesfor the benchmarks as compiled by the transformationalcompiler, \Them" is the times when compiled using theApollo Pascal compiler. All times are in seconds. Thethird column contains the ratio of the two times.Note that the transformational compiler's output runssomewhat slower for four of the programs, and in theother two, Fib and Towers, it runs somewhat faster(both of which perform a large number of procedurecalls). We consider these results to be quite good, and



(lambda (sp a0)(let* (((sp) ($push-stack-environment sp))(() ($set-environment sp 'p.45 a0))((a0) ($contents a0 'input))((d0) ($read a0))(() ($set-environment sp 'v4 d0))((a0) ($get-environment sp 'p.45))((a0) ($contents a0 '<si>))(() ($read-line a0))((d0) ($move16 '1))((d1) ($move16 '1)))($jump <loop> d0 d1)))<loop> =(lambda (d0 d1)(let* (((d2) ($get-environment sp 'v4)))($equal16 (<true> <false>) d0 d2)))<true> =(lambda ()(let* (((a0) ($get-environment sp 'p.45))((a0) ($contents a0 'output))(() ($write d1 a0))((a0) ($get-environment sp 'p.45))((a0) ($contents a0 'output))(() ($write-line a0))((sp) ($pop-stack-environment sp)))($simple-return () sp)))<false> =(lambda ()(let* (((d1) ($multiply16 d0 d1))((d0) ($add16 d0 '1)))($jump <loop> d0 d1)))Figure 8: register allocationperhaps surprising, given the simple structure of ourcompiler. We also do not consider our compiler to becomplete, in that many more standard optimizationscould be implemented without undue e�ort.8 Related workThere have only been a few realistic compiler gener-ators, such as those of Paulson [Paulson 82] and Lee[Lee 87], written using denotational semantics or at-tribute grammar descriptions of the source languages asinput. However, we do not feel they have been realisticenough, nor could they be called simple. The crucial dis-tinction between the \pure" semantics-directed compilergenerators and the compilation method described hereis that although both may translate the source program

Fib integer �bonacciBubble bubble sort on 1000 integersQuick quicksort on 5000 integersPalindrome integer arithmetic operationsPerm recursive array permutationsTowers towers of hanoiFigure 9: Benchmark ProgramsUs Them Us / ThemFib 3.40 4.47 0.76Bubble 0.72 0.64 1.09Quick 0.38 0.26 1.46Palindrome 5.06 4.79 1.06Perm 0.91 0.81 1.12Towers 3.50 3.92 0.89Figure 10: Benchmark Resultsinto a form of the lambda calculus, here the identi�erbindings, continuations, and the store of the source pro-gram are actually implemented using the bindings andcontinuations of the lambda calculus along with an im-plicit store. This restricts the ways in which the bind-ings, continuations, and store can be used by the sourceprogram, but allows the compiler to implement them ef-�ciently. By viewing the compilation process as a trans-formational one, we are able to concentrate on the dif-ferences between the intermediate \meta-language" andmachine language, yielding a more direct path betweenintermediate and machine code. As a result, much of theutility and generality of using the lambda calculus to de-scribe programming languages can be obtained withoutpaying the performance cost of compiling and runninggeneral lambda calculus programs.On the negative side, our methodology is somewhatless general than the pure approaches in that our in-termediate language is \biased" somewhat in the direc-tion of sequential, register-based, uni-processors. On theother hand, the compilation strategies of the pure ap-proaches are also certainly biased in that direction. Toretarget our approach to a radically di�erent architec-ture would require changing our intermediate languageas well as some of the transformations, whereas retarget-ing a pure approach would require considerable changesto the compilation strategy itself.Some parts of our compilation by transformationmethodology are related to other approaches to compilerdesign. For example, passing continuations as explicitarguments has been used in [Steele 78, Kranz 86]. Pass-



(lambda (sp a0)lea -6(sp),sp (let* (((sp) ($push-stack-environment sp))move.l a0,(sp) (() ($set-environment sp 'p.45 a0))move.l (a0),a0 ((a0) ($contents a0 'input))jsr read ((d0) ($read a0))move.w d0,4(sp) (() ($set-environment sp 'v4 d0))move.l (sp),a0 ((a0) ($get-environment sp 'p.45))move.l (a0),a0 ((a0) ($contents a0 'input))jsr read line (() ($read-line a0))moveq #1,d0 ((d0) ($move16 '1))moveq #1,d1 ((d1) ($move16 '1)))bra loop ($jump <loop> d0 d1)))false: (lambda ()muls.w d1,d0 (let* (((d1) ($multiply16 d0 d1))addq.l #1,d1 ((d0) ($add16 d0 '1)))($jump <loop> d0 d1)))loop: (lambda (d0 d1)move.w 4(sp),d2 (let* (((d2) ($get-environment sp 'v4)))cmp.l d0,d2 ($equal16 (<true> <false>) d0 d2)))ble falsetrue: (lambda ()move.l (sp),a0 (let* (((a0) ($get-environment sp 'p.45))move.l 4(a0),a0 ((a0) ($contents a0 'output))jsr write (() ($write d1 a0))move.l (sp),a0 ((a0) ($get-environment sp 'p.45))move.l 4(a0),a0 ((a0) ($contents a0 'output))jsr write line (() ($write-line a0))lea 6(sp),sp ((sp) ($pop-stack-environment sp)))rts ($simple-return () sp)))Figure 11: The machine code produced for the factorial exampleing environments as explicit arguments is one of our keyinnovations, but is related to \lambda-lifting" as used infunctional language compilers [Johnsson 87] and to themethod described in [Feeley]. The use of an intermediatelanguage to allow compilation of more than one languageis fairly common, as is the use of program transforma-tions. Indeed, there is at least one other compiler basedsolely on program transformations [Boyle 84, Boyle 86].Here, together with a few key innovations, these vari-ous techniques have been put together into one commonframework. Transformations are used exclusively, andonly on programs in one intermediate language. Thesemantics of the intermediate and target languages arespeci�ed denotationally, and the compilation transfor-mations are based directly on the di�erences and simi-larities of the two languages. The result is a very simplecompiler that generates surprisingly good code.
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